

WEEKLY TEST TYJ TEST - 28 B SOLUTION Date 24-11-2019

[PHYSICS]

Rate of transmission of heat by conduction is given by,

$$\frac{dQ}{dt} = \frac{KA\Delta\theta}{l}$$
, for both rods K, A and $\Delta\theta$ are same.

where, symbols have their usual meaning.

So,
$$\frac{dQ}{dt} \propto \frac{1}{l}$$

$$\frac{dQ}{dt} \propto \frac{1}{l}$$

$$\frac{dQ}{dt} \propto \frac{1}{l} = \frac{l_{\text{straight}}}{l_{\text{semicircular}}} = \frac{2r}{\pi r} = \frac{2}{\pi}$$

2. Thermal resistance in configuration I,

$$R_1 = R_1 + R_2 = \left(\frac{l}{KA}\right) + \left(\frac{l}{2KA}\right) = \frac{3}{2}\left(\frac{l}{KA}\right)$$

Thermal resistance in configuration II,
$$\frac{1}{R_{\text{II}}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{KA}{l} + \frac{2KA}{l}$$

$$R_{\rm II} = \frac{l}{3KA} = \frac{R_1}{4.5}$$

Since, thermal resistance $R_{\rm II}$ is 4.5 times less than thermal

$$t_{\rm II} = \frac{t_1}{4.5} = \frac{9}{4.5} \, s = 2s$$

3 Let R be the thermal conductivity of conductor A, then thermal conductivity of conductor $B = \frac{R}{2}$

and thermal conductivity of conductor C = 2R

$$\therefore \text{ Heat current, } H = \frac{100^\circ - 0^\circ}{R + \frac{R}{2} + 2R} = \frac{200}{7R}$$

If
$$T'$$
 be the temperature of the junction of A and B , then
$$H = \frac{100 - T'}{R} \text{ or } \frac{200}{7R} = \frac{100 - T'}{R}$$
 or
$$T' = \frac{500}{7} = 71^{\circ} \text{ C}$$

$$T' = \frac{500}{7} = 71^{\circ} \text{C}$$

4. According to question,

$$K_{B} = \frac{K_{A}}{2} \implies K_{B} = 3K_{C}$$

$$K_{C} = \frac{K_{A}}{6}$$

$$\Rightarrow \frac{l}{K_{S}} = \frac{l_{1}}{K_{A}} + \frac{l_{2}}{k_{B}} + \frac{l_{3}}{k_{C}}$$

$$\frac{3l}{K_{S}} = \frac{9l}{K_{A}} \implies K_{S} = \frac{K_{A}}{3}$$

5. As we know that rate of flow of heat is given by,

$$\frac{dQ}{dt} = \frac{KA\Delta T}{x}$$

$$\frac{1.56 \times 10^5}{3600} = \frac{K \times 2 \times 20}{12 \times 10^{-2}}$$

$$K = \frac{1.56 \times 10^5 \times 12 \times 10^{-2}}{3600 \times 2 \times 20} = \frac{1.56}{12} = 0.13$$

6. We know that, $\frac{dQ}{dt} = KA \frac{d\theta}{dx}$

In steady state, flow of heat,

$$d\theta = \frac{dQ}{dt} \cdot \frac{1}{KA} dx$$

$$\Rightarrow \qquad \qquad \theta_H - \theta = K'x \quad \Rightarrow \quad \theta = \theta_H - K'x$$

Equation, $\theta = \theta_H - K'x$ represents a straight line.

7. For first slab,

heat current,
$$H_1 = \frac{K_1(\theta_1 - \theta)A}{d_1}$$

$$\begin{pmatrix} \theta_1 & \theta & \theta_2 \\ \hline K_1 & K_2 & \\ \hline \end{pmatrix}$$

For second slab,

heat current,
$$H_2 = \frac{K_2(\theta - \theta_2)A}{d_2}$$

As slabs are in series

$$H_1 = H_2$$

$$\therefore \frac{K_1(\theta_1 - \theta)A}{d_1} = \frac{K_2(\theta - \theta_2)A}{d_2}$$

$$\Rightarrow \theta = \frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_2d_1 + K_1d_2}$$

- Heat current, $\frac{Q}{t} \propto \frac{r^2}{l}$, from the given options, option (b) has 8. higher value of $\frac{r^2}{l}$. Hence, $r = 2r_0$ and $l = l_0$.
- Temperature of interface, 9.

$$\theta = \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1}$$

It is given that $K_{Cu} = 9K_s$. So, if $K_s = K_1 = K$, then

$$K_{\text{Cu}} = K_2 = 9K$$
$$9K \times 100 \times 6 + K \times 0$$

$$\Rightarrow \qquad \theta = \frac{9K \times 100 \times 6 + K \times 0 \times 18}{9K \times 6 + K \times 18}$$

$$= \frac{5400 \, K}{72 \, K} = 75^{\circ} \text{C}$$

Equivalent thermal conductivity of the compound slab,

$$K_{\text{eq}} = \frac{l_1 + l_2}{\frac{l_1}{K_1} + \frac{l_2}{K_2}} = \frac{l + l}{\frac{l}{K} + \frac{l}{2K}}$$
$$= \frac{2l}{\frac{3l}{2K}} = \frac{4}{3}K$$

11. As we know, $Q \propto T^4$

$$\Rightarrow \frac{H_A}{H_B} = \left[\frac{273 + 727}{273 + 327}\right]^4 = \frac{625}{81}$$

12. Total energy radiated from a body

energy radiated from a body
$$Q = A \epsilon \sigma T^4 t \quad \text{or} \quad \frac{Q}{t} \propto A T^4$$

$$\frac{Q}{t} \propto r^2 T^4 \qquad (\because A = 4\pi r^2)$$

$$\frac{Q_1}{Q_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{8}{2}\right)^2 \left(\frac{273 + 127}{273 + 527}\right)^4 = 1$$

According to Wien's displacement law,

$$\lambda_m T = b$$
 or $\lambda_m \propto \frac{1}{T}$

where, b is Wien's constant whose value is 2.9×10^{-3} mK.

$$\frac{(\lambda_m)_S}{(\lambda_m)_F} = \frac{T_F}{T_S}$$

$$\frac{(\lambda_m)_S}{(\lambda_m)_F} = \frac{T_F}{T_S}.$$
or $T_F = T_S \times \frac{(\lambda_m)_S}{(\lambda_m)_F} = 5500 \text{ K} \times \frac{(5.5 \times 10^{-7} \text{ m})}{(11 \times 10^{-7} \text{ m})} = 2750 \text{ K}$

14. An ideal black body absorbs all the radiations incident upon it and has an emissivity equal to 1. If a black body and an identical another body are kept at the same temperature, then the black body will radiate maximum power.

> Hence, the black object at a temperature of 2000°C will glow brightest.

- 15. According to Newton's cooling law, option (c) is correct answer.
- According to Newton's law of cooling, t_1 will be less than t_2 .

17. We know that,
$$\frac{\lambda_A}{\lambda_B} = \frac{T_B}{T_A} = \frac{500}{1500} = \frac{1}{3}$$

 $E \propto T^4 A$ (where, $A = \text{surface area} = 4\pi R^2$)

$$E \propto T^4 R^2$$

$$\frac{E_A}{E_B} = \left(\frac{T_A}{T_B}\right)^4 \left(\frac{R_A}{R_B}\right)^2 = (3)^4 \left(\frac{16}{18}\right)^2 = 9$$

According to Wien's displacement law,

$$\lambda_m T = \text{constant}$$

$$\therefore \frac{(\lambda_m)_1}{(\lambda_m)_2} = \frac{T_2}{T_1}$$

Here,
$$\frac{T_1}{T_2} = \frac{3}{2}$$
, $(\lambda_m)_1 = 4000 \text{ Å} = 4000 \times 10^{-10} \text{ m}$

$$(\lambda_m)_2 = \frac{4000 \times 10^{-10} \times 3}{2} = 6000 \text{ Å}$$

Luminosity of a star depends upon the total radiations emitted by

The star emits 17000 times the radiations emitted by the sun.

$$E = \sigma T$$

Hence,
$$\frac{E_1}{E} = \left(\frac{T_1}{T}\right)^4$$

So,
$$(17000)^{1/4} = \frac{T_1}{T}$$
 (Given, $E_1 = 17000E$)

$$T_1 = 6000 \times 11.4 = 68400 \,\mathrm{K}$$

...(i)

According to Newton's law of cooling,

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

Case I

$$\Rightarrow \frac{80-64}{5} = K \left[\frac{80+64}{2} - \theta_0 \right]$$

$$\Rightarrow 3.2 = K[72-\theta_0]$$

Case II

$$\frac{64-52}{5} = K \left[\frac{64+52}{2} - \theta_0 \right]$$

$$2.4 = K[58-\theta_0] \qquad ...(ii)$$

On dividing Eq. (i) by Eq. (ii), we get $\frac{3.2}{2.4} = \frac{72 - \theta_0}{58 - \theta_0}$

$$\frac{3.2}{2.4} = \frac{72 - \theta_0}{58 - \theta_0}$$

$$185.6 - 3.2 \theta_0 = 172.8 - 2.4 \theta_0$$
⇒ $\theta_0 = 16^{\circ}$ C

[CHEMISTRY]

21. Lower the pK_a , stronger is the acid.

22.

$$HQ \iff H^{+} + Q^{-}$$
At Eqm. (0.1-x) $x = x$

$$pH = 3 \implies [H^{+}] = x = 10^{-3}$$

$$0.1 - x \approx 0.1$$

$$K_{a} = \frac{x \cdot x}{0.1 - x} = \frac{10^{-3} \times 10^{-3}}{0.1} = \mathbf{10^{-5}}$$

Alternatively:

$$x = c \alpha = 10^{-3}$$

$$\alpha = \frac{10^{-3}}{0.1} = 10^{-2}$$

$$K_a = c \alpha^2 = 0.1 \times 10^{-4} = 10^{-5}$$

23.
$$[OH^-] = \frac{100 \times 0.2 - 100 \times 0.1}{1000} = 10^{-2}$$

 $\Rightarrow pOH = 2 \Rightarrow pH = 12$

24. Change of pH from 1 to 2 \Rightarrow change in [H⁺] from 10^{-1} M to 10^{-2} M

$$M_2V_2$$
 (dil.) = M_1V_1 (conc.)
$$V_2 = \frac{10^{-1} \times 1}{10^{-2}} = 10 L$$

Volume of H_2O added = 10 - 1 = 9L

25.

CH₃COOH is a weak acid. $10^{-2}M$ CH₃COOH will give much less [H⁺] concentration than 10^{-2} M. Hence, pH will be **more than 2.**

26.

pH = 3
$$\Rightarrow$$
 [H⁺] = 10⁻³ M
On dilution, [H⁺] = $\frac{1}{2} \times 10^{-3} = 5 \times 10^{-4} M$
New pH = $-\log (5 \times 10^{-4}) = -(0.699 - 4) = 3.301$

27.

$$MX_{4} \rightleftharpoons M_{S} + 4X_{S}$$

$$K_{sp} = (S) (4S)^{4} = 256 S^{5}$$

$$S = \left[\frac{K_{sp}}{256}\right]^{1/5}$$
(S is solubility in mol L⁻¹)

28.

$$MX_{2} \stackrel{\longrightarrow}{\longrightarrow} M^{2+} + 2X^{-}$$

$$S = 2S$$

$$K_{sp} = S \times (2S)^{2} = 4S^{3}$$

$$4S^{3} = 4 \times 10^{-12}$$

$$S = 1 \times 10^{-4} M$$
(S is solubility in mol L⁻¹)

29.

$$K_{sp}$$
 of Cr (OH)₃ = $S \times 3^3 S^3$
 $27S^4 = 1.6 \times 10^{-30}$
 $S = \sqrt[4]{1.6 \times 10^{-30} / 27}$

30.

$$A_3B_2 \xrightarrow{\longrightarrow} 3A + 2B$$

$$3x + 2B \text{ [for solubility of } A_3B_2 \text{ as } xM \text{]}$$

$$K_{sn} = [A]^3 \times [B]^2 = [3x]^3 \times [2x]^2 = 108 x^5$$

31.

Solubility is directly proportional to K_{sp} . MnS has highest K_{sp} among the given substances and hence has highest solubility.

32.

CaF₂
$$\Longrightarrow$$
 Ca²⁺ + 2F⁻
For solubility 'S', $K_{sp} = (S)(2S)^2 = 4S^3$
 $4S^3 = 3.2 \times 10^{-11}$
 $S^3 = 8 \times 10^{-12}$
 $S = 2 \times 10^{-4} M$

33.

For solubility S,
$$K_{sp}$$
 of $A_2B_3 = (2)^2 \times (3)^3 \times S^2 \times S^3 = 108 \times (1 \times 10^{-2})^5$
= $108 \times 10^{-10} = 1.08 \times 10^{-8}$

34.

HgCl₂
$$\Longrightarrow$$
 Hg²⁺ + 2Cl⁻

$$K_{sp} = S \times (2S)^2 = 4S^3$$

$$4S^3 = 4 \times 10^{-15}$$

$$S = 10^{-5}$$
[Cl⁻] = 2S = 2 × 10⁻⁵ M

35.

Higher the K_{sp} , higher is the solubility.

36.

PbCl₂
$$\Longrightarrow$$
 Pb²⁺ + 2Cl⁻
For solubility 's' \Longrightarrow $s = \left(\frac{1}{4} \times 10^{-6}\right)^{\frac{1}{3}}$
= $(0.25 \times 10^{-6})^{1/3}$

37.

If 1 L of each solution is mixed,

$$[H^{+}] = \frac{10^{-3} + 10^{-4} + 10^{-5}}{3}$$
$$= \frac{111 \times 10^{-4}}{3} = 3.7 \times 10^{-4} M$$

38.

AgCl
$$\Longrightarrow$$
 Ag⁺ + Cl⁻
For solubility 's' \Longrightarrow Na⁺ + Cl⁻
NaCl \Longrightarrow Na⁺ + Cl⁻
0.1 0.1
[Ag⁺] + [Cl⁻] = $K_{sp} \Longrightarrow$ (s)(0.1) = 1.2×10⁻¹⁰
 $s = 1.2 \times 10^{-9} M$

39. 40.

$$C\alpha^{2} = K_{a}$$

$$[H^{+}] = C\alpha = \frac{K_{a}}{\alpha}$$

$$pH = -\log \frac{K_{a}}{\alpha}$$

$$pH = -\log \frac{K_a}{\alpha}$$

$$= -\log K_a + \log \alpha$$

$$= -\log 10^{-9} + \log \left(\frac{0.01}{100}\right)$$

$$= +9 - 4 = 5$$

[MATHEMATICS]

41. (b)
$$\frac{2b^2}{a} = b \implies \frac{b}{a} = \frac{1}{2} \implies \frac{b^2}{a^2} = \frac{1}{4}$$

Hence $e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{\sqrt{3}}{2}$.

42 (b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. Since it passes through (-3, 1) and (2, -2), so $\frac{9}{a^2} + \frac{1}{b^2} = 1$ and $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4} \Rightarrow a^2 = \frac{32}{3}$, $b^2 = \frac{32}{5}$

Hence required equation of ellipse is $3x^2 + 5y^2 = 32$.

Trick: Since only equation $3x^2 + 5y^2 = 32$ passes through (-3, 1) and (2, -2). Hence the result.

43 (a) Given
$$\frac{2b^2}{a} = 10$$
 and $2b = 2ae$

Also $b^2 = a^2(1 - e^2) \implies e^2 = (1 - e^2) \implies e = \frac{1}{\sqrt{2}}$
 $\implies b = \frac{a}{\sqrt{2}}$ or $b = 5\sqrt{2}$, $a = 10$

Hence equation of ellipse is $\frac{x^2}{(10)^2} + \frac{y^2}{(5\sqrt{2})^2} = 1$
i.e., $x^2 + 2y^2 = 100$.

44. (d)
$$e = \frac{1}{\sqrt{2}}$$
; Latus rectum $= \frac{2b^2}{a} = \frac{2a^2}{a} \left(1 - \frac{1}{2}\right) = a$ i.e., semi-major axis.

45. (a) Let the equation of ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\therefore$$
 It passes through $(-3, 1)$

So,
$$\frac{9}{a^2} + \frac{1}{b^2} = 1 \Rightarrow 9 + \frac{a^2}{b^2} = a^2$$
(i)

Given eccentricity is
$$\sqrt{2/5}$$

So,
$$\frac{2}{5} = 1 - \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = \frac{3}{5}$$
(ii)

From equation (i) and (ii),
$$a^2 = \frac{32}{3}, b^2 = \frac{32}{5}$$

Hence required equation of ellipse is $3x^2 + 5y^2 = 32$.

46. (b)
$$\frac{x^2}{2-r} + \frac{y^2}{r-5} + 1 = 0 \Rightarrow \frac{x^2}{r-2} + \frac{y^2}{5-r} = 1$$

Hence $r > 2$ and $r < 5 \Rightarrow 2 < r < 5$.

47. (a) The ellipse is $4(x-1)^2 + 9(y-2)^2 = 36$ Therefore, latus rectum = $\frac{2b^2}{a} = \frac{2.4}{3} = \frac{8}{3}$

48. (b)
$$4x^2 - 8x + y^2 + 2y + 1 = 0$$

$$\Rightarrow (2x - 2)^2 + (y + 1)^2 = -1 + 4 + 1$$

$$\Rightarrow \frac{(x - 1)^2}{1} + \frac{(y + 1)^2}{4} = 1 \Rightarrow e = \sqrt{1 - \frac{1}{4}} \Rightarrow e = \frac{\sqrt{3}}{2}.$$

49. (a) Let any point on it be
$$(x,y)$$
, then $\frac{\sqrt{(x+1)^2} + \sqrt{(y-1)^2}}{\left|\frac{x-y+3}{\sqrt{2}}\right|} = \frac{1}{2}$

Squaring and simplifying, we get $7x^2 + 2xy + 7y^2 + 10x - 10y + 7 = 0$.

50. (b)
$$c = \pm \sqrt{b^2 + a^2 m^2} = \pm \sqrt{4 + 8.4} = \pm 6$$
.

51. (b)
$$\frac{2b^2}{a} = b \Rightarrow \frac{b}{a} = \frac{1}{2} \Rightarrow \frac{b^2}{a^2} = \frac{1}{4}$$
Hence $e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{\sqrt{3}}{2}$.

52. (b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. Since it passes through (-3, 1) and (2, -2), so $\frac{9}{a^2} + \frac{1}{b^2} = 1$ and $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4} \Rightarrow a^2 = \frac{32}{3}$, $b^2 = \frac{32}{5}$

Hence required equation of ellipse is $3x^2 + 5y^2 = 32$.

Trick: Since only equation $3x^2 + 5y^2 = 32$ passes through (-3, 1) and (2, -2). Hence the result.

53. (c)
$$\frac{x^2}{\frac{112}{16}} + \frac{y^2}{\frac{112}{7}} = 1$$
. Therefore, $e = \sqrt{1 - \frac{112}{16} \cdot \frac{7}{112}} = \frac{3}{4}$.

- 54. (b) Here given that $2b = 10, 2a = 8 \implies b = 5, a = 4$ Hence the required equation is $\frac{x^2}{16} + \frac{y^2}{25} = 1$.
- 55. (c) Let point be (h,k) their pair of tangent will be $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} 1\right) \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} 1\right) = \left(\frac{hx}{a^2} + \frac{yk}{b^2} 1\right)^2$ Pair of tangents will be perpendicular, if coefficient of x^2 + coefficient of $y^2 = 0$ $\Rightarrow \frac{k^2}{a^2b^2} + \frac{h^2}{a^2b^2} = \frac{1}{a^2} + \frac{1}{b^2} \Rightarrow h^2 + k^2 = a^2 + b^2$ Replace (h,k) by $(x,y) \Rightarrow x^2 + y^2 = a^2 + b^2$.
- 56. (c) Focal distance of any point P(x,y) on the ellipse is equal to SP = a + ex. Here $x = a\cos\theta$ Here $SP = a + ae\cos\theta = a(1 + e\cos\theta)$.
- 57. (a) Let point $P(x_1, y_1)$ $So, \sqrt{(x_1 + 2)^2 + y_1^2} = \frac{2}{3} \left(x_1 + \frac{9}{2} \right)$ $\Rightarrow (x_1 + 2)^2 + y_1^2 = \frac{4}{9} \left(x_1 + \frac{9}{2} \right)^2$ $\Rightarrow 9[x_1^2 + y_1^2 + 4x_1 + 4] = 4 \left(x_1^2 + \frac{81}{4} + 9x_1 \right)$ $\Rightarrow 5x_1^2 + 9y_1^2 = 45 \Rightarrow \frac{x_1^2}{9} + \frac{y_1^2}{5} = 1,$ Locus of (x_1, y_1) is $\frac{x^2}{9} + \frac{y^2}{5} = 1$, which is equation of an ellipse.
- 58. (b) $SP + S'P = 2\alpha = 2.6 = 12$.
- 59. (c) In the first case, eccentricity $e = \sqrt{1 (25/169)}$ In the second case, $e' = \sqrt{1 (b^2/a^2)}$ According to the given condition, $\sqrt{1 b^2/a^2} = \sqrt{1 (25/169)}$ $\Rightarrow b/a = 5/13, \quad (\because a > 0, b > 0)$ $\Rightarrow a/b = 13/5.$
- 60. (b) Foci = (3,-3) \Rightarrow ae = 3-2=1Vertex = (4,-3) \Rightarrow a = 4-2=2 \Rightarrow $e = \frac{1}{2}$ \Rightarrow $b = a\sqrt{1-\frac{1}{4}} = \frac{2}{2}\sqrt{3} = \sqrt{3}$ Therefore, equation of ellipse with centre (2,-3) is $\frac{(x-2)^2}{4} + \frac{(y+3)^2}{3} = 1.$